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N E U R O S C I E N C E

Collective behavior emerges from genetically 
controlled simple behavioral motifs in zebrafish
Roy Harpaz1,2†, Ariel C. Aspiras3†, Sydney Chambule3, Sierra Tseng3, Marie-Abèle Bind4, 
Florian Engert1,2, Mark C. Fishman3*‡, Armin Bahl1,2,5‡

It is not understood how changes in the genetic makeup of individuals alter the behavior of groups of animals. 
Here, we find that, even at early larval stages, zebrafish regulate their proximity and alignment with each other. 
Two simple visual responses, one that measures relative visual field occupancy and one that accounts for global 
visual motion, suffice to account for the group behavior that emerges. Mutations in genes known to affect social 
behavior in humans perturb these simple reflexes in individual larval zebrafish and change their emergent collec-
tive behaviors in the predicted fashion. Model simulations show that changes in these two responses in individu-
al mutant animals predict well the distinctive collective patterns that emerge in a group. Hence, group behaviors 
reflect in part genetically defined primitive sensorimotor “motifs,” which are evident even in young larvae.

INTRODUCTION
Collective movements of animal groups are adaptive (1) because they 
provide protection from predation (2, 3), improve foraging (4–6), 
and enhance energy utilization (7, 8). Extensive evidence has shown 
that such group behaviors can emerge from local interactions among 
individuals (9–20). However, it is not known how the genetic makeup 
of animals affects the sensorimotor algorithms implemented by 
individual animals that give rise to emergent patterns of collec-
tive behavior.

Zebrafish display a variety of distinct group behaviors, including 
shoaling, where individuals swim in proximity, and schooling, where 
all members of the group move in the same direction. To achieve 
such synchronized movements in groups, individual members need 
to assess certain properties of their near neighbors, including their 
speed, distance, and orientation; they also need to rapidly respond 
to these features and execute the appropriate motor commands. 
The ability to perform such socially relevant sensorimotor transfor-
mations, and thereby the ability to form groups, varies among differ-
ent genetic backgrounds (21–24) and is modified by hunger (25–27) 
and innate interindividual differences (28–31). Furthermore, whereas 
inputs from several sensory modalities such as lateral line mechano-
reception (32, 33), olfaction (34), and vision likely play a role in this 
process, vision is critical to certain attributes, such as the rapidity of 
turning responses, the necessary integration of distal cues, and the 
precision of the alignment responses (9, 10, 24). Mapping the algo-
rithmic rules and neurophysiology underlying collective behaviors 
can be more readily accomplished in larval zebrafish when the brain 
is transparent and circuits are simpler than in adults (35). However, 
while reflexive responses to stimuli emanating from conspecifics have 
been described in various contexts (32, 33), there has been little 

evidence of robust shoaling- or schooling-like behavior in zebrafish 
larvae younger than ~10 days post fertilization (dpf) (13, 30, 36).

Here, we identify two visual reflexes that are present from 7 dpf. 
We believe that the implementation of these reflexes leads to emergent 
patterns of the groups as fish mature. First, young larvae appear to 
repel away from regions of high visual clutter, leading to a dispersal 
of the group. At later developmental stages, this dispersal reflex 
shifts to attraction and hence leads to the observed aggregation 
behaviors. Second, larvae are known to move along with external 
motion stimuli, a well-described behavior known as the optomotor 
response (OMR) (37–39). We hypothesize that individuals swimming 
within a group can cue in on their neighbors’ relative motion and 
that this reflex might help in improving mutual alignment. The 
combined developmental maturation of both reflexes can thus ex-
plain emergent shoaling and schooling behavior.

Notably, mutations in genes associated with autism and schizo-
phrenia quantitatively alter these two visuomotor responses, and these 
changes seem to be predictive of the distinct emergent behaviors of 
groups of mutant fish. Thus, subtle alterations in simple behavioral 
motifs in the individual can account for complex emergent patterns 
of groups.

RESULTS
Visually driven aggregation and alignment in larval 
and juvenile zebrafish
We examined the behavior of wild-type larval zebrafish in groups of 
five, swimming together in a circular arena, where an overhead 
camera was used to monitor the position, orientation, and speed of 
each individual over extended time periods (see Fig. 1A and Methods). 
As animals mature from 7 to 21 dpf, we observed that they swim 
more closely to one another (Aggregation7 dpf = −0.019 ± 0.04 
[means ± SD], Aggregation21 dpf = 0.476 ± 0.19, PFisher < 1/100,000), 
are more aligned (Alignment7  dpf = 0.417 ± 0.018 [means ± SD], 
Alignment21 dpf = 0.458 ± 0.027, PFisher < 1/100,000), and exhibit faster 
swim speeds (Speed7 dpf = 0.34 ± 0.07 cm/s [means ± SD], Speed21 dpf = 
0.6 ± 0.17 cm/s, PFisher < 1/100,000) (Fig. 1, A to C, and fig. S1A). In 
addition, at 21 dpf, larvae exhibit a positive correlation between mutual 
alignment and aggregation (rPearson = 0.44, P = 0.027) (Fig. 1D), a 
phenomenon that is consistent with the plausible concept that 
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conspecifics that swim closer to each other evoke stronger alignment 
responses than do more distant fish. Even at 7 dpf, groups already 
exhibit evidence of interactions. However, at this early age, the 
aggregation indices appear to be negative [mean Aggregation7 dpf = 
−0.019, 95% bootstrap interval (BI): [−0.0362; −0.0004], two-sided 
Pbootstrap ≈ 0.047], indicating that young larvae may display mutual 
repulsion rather than attraction. Despite the resulting increase in 
interindividual distances, we observe that alignment is present at 
this early age (mean Alignment7 dpf= 0.417, 95% BI: [0.4086 0.4252], 

two-sided Pbootstrap ≈ 0.0002) and becomes stronger in older fish 
(Fig. 1C). This result also serves as a motivation to use higher- 
sensitivity assays to explore the mechanism by which fish align to 
global visual motion stimuli, as described later.

To explore the algorithmic basis of the transition from dispersed 
to aggregated groups with age, we examined the turning behavior of 
fish in response to the occupancy of their right and left visual fields, 
i.e., the retinal “clutter” generated by the presence of conspecifics 
swimming in the vicinity (Fig. 1E, left) (11, 13). We observe that 
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Fig. 1. Aggregation in developing zebrafish. (A) Left: Groups of five fish were tested in circular arenas, while overhead cameras recorded their behaviors. Right: Position 
and body orientations of each fish were extracted from the movies. (B) Example traces of the aggregation index (left) and alignment index (right) (see Methods) of groups 
of 7- and 21-dpf wild-type fish. Dotted lines represent baseline dispersion and aggregation levels of shuffled control groups. At 21 dpf, fish show higher aggregation and 
alignment than 7-dpf fish. (C) Left: At 7 dpf, fish are less aggregated than shuffled control groups (PBootstrap ≈ 0.047, N = 18 groups; Cohen’s d = −0.49) (see Methods), while 
21-dpf fish form tight groups (PBootstrap < 1/100,000; N = 25 groups, Cohen’s d = 2.5). Right: 7-dpf fish are more aligned than shuffled control groups (PBootstrap ≈ 0.0002, 
Cohen’s d = 0.8), and 21-dpf fish are more aligned than 7-dpf fish (PFisher < 1/100,000; Cohen’s d = 1.8). *P < 0.05, ***P < 0.0005. (D) Pearson’s correlation of alignment and 
aggregation in 7-dpf (left) and 21-dpf (right) fish. Uncertainty regions are based on pointwise 95% CIs of the linear regression model (Methods). (E) Effect of “visual clutter.” 
Left: We reconstruct the visual angle that each neighboring fish is expected to cast on the retina of a focal fish (see Methods). Middle: The difference between total angu-
lar area (or visual clutter) experienced by each eye modulates the probability to turn away (7 dpf) or toward (21 dpf) the more cluttered visual field. Bold lines represent 
turning probability calculated from left/right turning events recorded from all fish in 5° bins. Uncertainty regions are based on pointwise 95% CI of a fitted binomial dis-
tribution to the events in each bin. Right: The integral of the curves in the middle panels symmetrized such that repulsion from clutter is negative and attraction is positive.
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7-dpf fish tend to turn away from the more highly cluttered area, 
whereas 21-dpf animals turn toward it [e.g., p(turn right) = 0.407, 
95% confidence interval (CI): [0.339 0.479] for +25° clutter difference 
(more clutter to the right) at 7 dpf, whereas p(turn right) = 0.589, 
95% CI: [0.580 0.597] for +25° at 21 dpf] (Fig. 1E). This simple visuo-
motor response to differences in retinal clutter leads to a dispersal 
(7 dpf) or aggregation (21 dpf) phenotype.

We next tested whether perturbations by targeted genetic muta-
tions cause specific changes in the clutter avoidance curves (Fig. 1E), 
thereby generating quantitative changes in aggregation indices and 
the associated shoaling phenotype in mutant animals. To that end, 
we selected fish with mutations in two genes that have been shown 
to generate specific social phenotypes in adults (24). The first gene, 
scn1lab, codes for a sodium channel. Its mutation is associated with 
Dravet’s syndrome in humans and causes more scattered group be-
haviors in adult zebrafish. We evaluated heterozygous fish of two 
alleles (scn1laballele1 and scn1laballele2), because homozygous muta-
tions are early lethal. The second gene, disrupted-in-schizophrenia 
(disc1), encodes a scaffolding protein associated with schizophrenia 
in humans; zebrafish with a homozygous deficiency in disc1 display 
increased group cohesion as adults (24). We find that larvae with 
mutations in both genes behave differently from wild-type fish in 
the group swimming assay in a manner that is consistent with the 
differences described in mutant versus wild-type adults (24). At 7 dpf, 
both scn1lab+/− alleles show an increase in dispersal when compared 
to their wild-type siblings, which manifests as a reduced aggrega-
tion index (Aggregation7 scn1lab + /− = −0.052 ± 0.047 [means ± SD], 
Aggregation7 scn1lab + /+ = −0.005 ± 0.073, one-sided PFisher ≈ 0.035) 
(Fig. 2A and fig. S1B). At 21 dpf, both scn1lab+/− and scn1lab+/+ 
switch from dispersal to aggregation, but mutant fish are still less 
aggregated than their sibling controls (Aggregation21 scn1lab + /− = 
0.44 ± 0.17  [means ± SD], Aggregation21  scn1lab + /+ = 0.6 ± 0.13, 
one-sided PFisher ≈ 0.0001) (Fig. 2A and fig. S1B), which is in line 
with the reduced aggregation phenotype reported in adults (24). 
In contrast, 7-dpf disc1−/− fish show an increase in aggregation 
relative to their disc1+/+ sibling controls (Aggregation7 disc − /− = 
−0.012 ± 0.026 [means ± SD], Aggregation7 disc + /+ = −0.038 ± 0.024, 
one-sided PFisher ≈ 0.0128), an effect that is also present at 21 dpf 
(Aggregation21 disc − /− = 0.44 ± 0.13 [means ± SD], Aggregation21 disc + /+ = 
0.32 ± 0.1, one-sided PFisher ≈ 0.0129) (Fig. 2B).

We next examined whether the responses of the mutant fish to 
retinal clutter are concordant with the observed aggregation indices: 
Compared to wild-type siblings, we observed that scn1lab+/− fish have 
an enhanced tendency to turn away from high clutter at 7 dpf (symme-
trized area under the curve sAUC7 scn1lab+/− = −1.7, sAUC7 scn1lab+/+ = 
−0.8), and they may have a slightly reduced tendency to turn toward 
high clutter at 21 dpf (sAUC21 scn1lab+/− = 5.3, sAUC21 scn1lab+/+ = 6.0) 
(Fig. 2E). The disc1−/− mutation, on the other hand, displays a slight 
“flattening” at the edges of the clutter response curve at 7 dpf 
(sAUC7 disc−/− = −0.93, sAUC7 disc+/+ = −1.10), suggesting less repulsion, 
and a similarly small enhancement of the tendency to turn toward 
high visual clutter at 21 dpf (sAUC21 disc−/− = 3.3, sAUC21 disc+/+ = 2.7) 
(Fig.  2F). These trends are both qualitatively in line with the in-
crease in aggregation indices at both ages (Fig. 2B). However, 
uncovering the precise relationship between the turning curves and 
aggregation indices requires a more detailed and quantitative anal-
ysis, as we describe in our collective behavior models below.

Both wild-type and mutant fish show enhanced mutual align-
ment by 21 dpf compared to 7 dpf (Fig. 2, A and B). However, our 

data did not allow us to report an alignment difference between mutant 
and wild-type animals at any age or strain (PFisher ≈ 0.26 and 0.47 
for 7- and 21-dpf scn1lab; PFisher ≈ 0.47 and 0.33 for 7- and 21-dpf disc1).

We observe a positive correlation of alignment with aggregation 
in scn1lab+/− 21-dpf mutants in both alleles (rPearsonallele2 = 0.55, 
rPearson

allele1 = 0.65) (Fig. 2C and fig. S1D), whereas in 21-dpf disc1−/− 
animals, no correlation can be inferred from the data (Fig. 2D). This 
observation suggests that mutations might cause subtle changes in 
alignment dependent on proximity, which we explore further using 
a more targeted approach to extract alignment phenotypes, as de-
scribed below in the OMR experiments.

In summary, the tendency of 7-dpf animals to move away from 
visual clutter and their enhanced alignment indices indicate that 
conspecific fish, even at this young age, interact with each other. 
This interaction precedes the well-described tendency to move 
toward clutter by 21 dpf (13). Notably, we could estimate the effects 
of mutations associated with human social disorders on behavior as 
early as 7 dpf, and these effects become more pronounced as ani-
mals mature.

Mutant larval zebrafish show specific changes in their ability 
to align with motion
Alignment among adult fish can arise from attraction and repulsion 
alone, and in many cases, it has been shown that an explicit align-
ment process is not required (9, 10, 12). However, explicit alignment 
reflexes, in particular to moving cues, are known to exist in larval 
fish (37–39), and we therefore explored this possibility by analyzing 
such explicit responses to motion cues in mutant and wild-type 
strains. Larval zebrafish turn in response to motion of dots in their 
visual fields, which can be quantified by a coherent dot–based opto-
motor response (OMR) assay (39,  40). We, therefore, presented 
7-dpf free-swimming individuals with clouds of flickering small dots 
that drifted either to the right or left, relative to their body orienta-
tion (Fig. 3A and movie S1). The limited lifetime and partial global 
coherence of these dots make it more challenging to identify motion 
direction, such that fish have to temporally integrate information to 
make appropriate swimming decisions (39, 40). These decisions can 
be quantified as a function of dot coherence, the proportion of swims 
following the direction of the motion stimulus (“probability correct”), 
and the time of quiescence between consecutive swims (“interbout 
interval”) (Fig.  3,  B  and  C). We also estimated the probability of 
swimming in the same direction for consecutive bouts, even when 
not stimulated by motion drift, to assess the tendency of larval 
zebrafish to repeat the same motor action over extended periods of 
time (Fig. 3D and fig. S2, B and C) (41).

We find that, compared to wild-type siblings, fish of both 
scn1lab+/− alleles have an increased probability of responding cor-
rectly as a function of coherence (two-sided PFisher  ≈ 0.95,0.045,0.001, 
and 0.001, for coherences of 0, 25, 50, and 100%) and that they re-
spond with longer delays as seen by increased interbout intervals 
(two-sided PFisher <1/100,000, for all coherences) (Fig. 3, B and C, 
and fig. S2). They also show an increased probability of turning in 
the same direction for consecutive bouts (two-sided PFisher ≈ 0.08
,0.0001,0.0001,0.00001,0.00001, and 0.0004 for time delays of 0.125 
to 1.375 s) (Fig. 3D). The disc1−/− mutants, on the other hand, differ 
only in having longer interbout intervals than do their wild-type 
siblings (two-sided PFisher ≈ 0.08,0.18,0.35, and 0.51, for coherences 
of 0, 25, 50, and 100%) (Fig. 3C). Turning distributions of mutant 
animals and sibling controls indicate an increase in turn angle compared 
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to controls, for both scn1lab alleles for the highest coherence level 
(two-sided PFisher ≈ 0.0001,0.8, and 0.0002 for scn1laballele2, disc1, 
and scn1laballele1) (fig. S2C). Hence, mutations in both genes cause 
subtle differences in the animals’ ability to integrate information 
over time and to align with motion drift in their environment.

Drift-diffusion model for motion integration to explain 
alignment with motion cues
We have previously shown that the responses of individual larval 
zebrafish to coherent dot motion can be well described by the com-
putational framework of a “drift-diffusion model” (DDM) (Fig. 3E) 
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Fig. 2. Single-gene mutations affect aggregation and alignment of developing zebrafish. +/+, +/− , and –/– refer to sibling-controlled wild-type and mutant fish. (A) Left: At 7 dpf, 
scn1lab+/− fish are more dispersed than wild-type siblings (PFisher ≈ 0.036, N+/+  = 10, N+/− = 16 groups, Cohen’s d = −0.8). Dashed lines represent values of shuffled groups. At 21 dpf, fish 
are more aggregated. Scn1lab+/− aggregate less than scn1lab+/+ (PFisher ≈ 0.0001; N+/+ = 25, N+/− = 26 groups, Cohen’s d = −1.09). Right: Group alignment increases with age; however, we 
could not detect an effect of the scn1lab mutation (P7 Fisher = 0.26, P21 Fisher = 0.47). *P < 0.05, ***P < 0.0005. (B) Left: At 7 dpf, disc1−/− are less dispersed than wild-type siblings (PFisher ≈ 0.0128; 
N+/+ = 7, N−/− = 17 groups, Cohen’s d = 1.04). At 21 dpf, disc1−/− show more aggregation compared to wild-type siblings (PFisher ≈ 0.0129; N+/+  = 12, N−/− = 13 groups, Cohen’s d = 0.95). 
Right: We could not detect effect of the disc1 mutation on alignment (P7 Fisher = 0.33, P21 Fisher = 0.40). (C) Pearson’s correlation of alignment and aggregation in scn1laballele2 7-dpf (top) 
and 21-dpf (bottom) fish. Positive correlation for 21-dpf scn1laballele2

+/− fish. Uncertainty regions are the pointwise 95% CI of the linear regression model. (D) We could not detect correlation 
for disc1. (E) Left: scn1laballele2

+/− turn away more from visual clutter at 7 dpf (top) and turn toward clutter less at 21 dpf (bottom). Right: Integral of the curves symmetrized. Repulsion is negative. 
Attraction is positive. (F) Same as in (E) but for disc1. Mutants show a flattening of the 7-dpf repulsion curve (top) and an enhancement in 21-dpf attraction (bottom). Bold lines in (E) and (F) 
represent turning probability calculated from left/right turns of all fish in 5° bins; uncertainty regions are the pointwise 95% CI of a fitted binomial distribution to the events in each bin.
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Fig. 3. Mutant 7-dpf larval zebrafish display differential integration and alignment phenotypes, which can be quantitatively captured by a simple integrator 
model. (A) Experimental setup [adapted from (39)]. A single larval zebrafish swims freely on top of a projected cloud of randomly moving dots. Dots move continuously 
at different coherence levels either to the right or left relative to the body orientation of the animal (movie S1). (B) Probability to correctly align with the coherent motion 
stimulus as a function of coherence strength. Scn1laballele2

+/− mutant fish (bright green) show improved performance relative to scn1laballele2
+/+ wild-type sibling controls 

(dark green). Our data did not allow us to report a difference in performance of the disc1 mutant (magenta) compared to sibling controls (black). (C) Interbout interval 
as a function of coherence. Values are elevated for both mutants relative to wild-type sibling controls. (D) Tendency to turn in the same direction as a function of the 
time since the last bout during randomly flickering 0% coherence stimulation. Responses are elevated for the scn1laballele2 mutant relative to wild-type sibling controls. 
(E) Integrator model with decision threshold (T), perceptual noise (), leak time constant (), and probabilities to make a turn or swim forward (pabove and pbelow, depending 
on whether the integrated value is above or below the threshold). (F to H) Optimized model results, analyzed and displayed as in (B) to (D). The model accurately captures 
the behavioral features of both wild-type and mutant larvae. N = 44, 36, 21, and 16 individually tested fish for genotypes scn1laballele2

+/+, scn1laballele2
+/−, disc1+/+, and 

disc1−/−, respectively, in (B) to (D). N = 12 models (different optimization repeats) for each genotype in (F) to (H). Error bars in (B) to (D) and (F) to (H) are ± SEM.
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(42, 43). This model uses only five parameters: the internal noise 
(), integration and decay time constants (), decision thresholds 
(T), and two swimming probabilities (pbelow and pabove; see Meth-
ods) to fully describe the behavior. Notably, none of these parame-
ters can be measured directly through experiments. We therefore 
resorted to a multiobjective fitting approach, which allowed us to 
automatically extract those values and systematically explore their 
variation due to the mutations (see figs. S3 and S4 and Methods). 
We show that this strategy quantitatively captures subtle behavioral 
features across the different mutants. For example, we find that, when 
compared to the respective sibling control animals, the threshold 
variable (T) decreases in scn1lab mutant fish, whereas it increases 
for the disc1 mutant (fig. S4B). Thus, modeling wild-type and mu-
tant fish behavior exclusively based on the DDM with these extracted 
variables allowed us to test whether this framework is sufficient to 
explain the behavioral results.

We find that the model predicts most of the experimental data 
(Fig. 3, B to D and F to H, and fig. S3, B, C, E, and F), which suggests 
that the DDM provides an adequate framework to quantitatively 
describe alignment behavior in groups and that it is capable of reli-
ably extracting hidden integration and decision-making variables in 
mutant animals. Furthermore, a quantitative evaluation of these 
behavioral variables allows us to make specific predictions about 
corresponding neural circuit changes in mutant animals (39, 40), 
and they can also provide the critical substrate for model simulations 
of fish in more complex scenarios (see below).

Models based on two simple reflexes explain emergent 
collective behavior
We tested whether the two basic reflexes, i.e., the “clutter response” 
(Fig. 1E) and the coherent moving dot response (cdOMR) (Fig. 3A), 
are sufficient, when applied to individual fish, to explain the different 
emergent behaviors of the groups. To that end, we simulated groups 
of five virtual fish swimming in a circular arena, in which each indi-
vidual agent follows only the computations predicted by our two 
assays (Fig. 4A). The “clutter response computation” is the measure-
ment of the clutter projected by the four conspecifics onto the left 
and right eyes. The “moving dot computation” measures the retinal 
motion component generated by all other fish (see Methods). Both 
signals are integrated over time and compared to the threshold, 
allowing the model to make decisions about whether to move for-
ward or make turns, as described by the DDM model (see Fig. 3E 
and Methods). Using these two computations, we simulated swim trajec-
tories of groups of 7-dpf and 21-dpf “virtual” fish (Fig. 4B and movies 
S2 and S3) and extracted aggregation and alignment indices, as done 
for groups of real fish (Fig. 1). Simulations corresponding to the different 
experimentally obtained variables and response curves revealed that 
the model produces results that qualitatively match the experimental 
findings: 7-dpf wild-type virtual larvae show a tendency to repel each 
other (with slightly negative aggregation indices), whereas 21-dpf 
virtual animals show strong aggregation behavior (Aggregation7 dpf = 
− 0.15 ± 0.11, Aggregation21 dpf = 0.98 ± 0.2) (Fig. 4C). Alignment 
indices increase from 7 to 21 dpf (Alignement7 dpf = 0.44 ± 0.025, 
Alignment21  dpf = 0.46 ± 0.023), as observed in the experimental 
results (Fig. 4D). Because we used the same cdOMR variables for 
7- and 21-dpf simulations, this improvement in alignment is likely 
a consequence of the enhanced aggregation values in older animals, 
which leads to a more pronounced effect of visual motion cues 
and consequently stronger alignment (Fig. 1D). To further, and 

explicitly, probe the interdependence of aggregation and alignment, 
we asked how well each rule by itself predicts aggregation and align-
ment indices, respectively (Figs. 4C and 4D) and how they interact 
when combined. We find that aggregation indices are, as expected, 
dominated by the clutter response rule (although the addition of the 
motion response rule slightly enhances aggregation). Alignment in-
dices, on the other hand, which depend predominantly on the mo-
tion response rule, are modulated and brought into far better 
agreement with observed data when the clutter response is added. 
Thus, the combination of the two attributes, clutter response and 
dot motion response, predicts that the reduced aggregation of 7-dpf 
fish will lead to weaker alignment, and the strong aggregation in 
21-dpf animals will lead to stronger alignment, both results that are 
concordant with the experimental data.

We next used this modeling framework to simulate mutant animals, 
by combining both clutter and motion computations and using the 
model parameters that we extracted from our experimental assays 
for each genotype (Fig. 2, E and F, and figs. S1E and S4B). Here we 
find, also in agreement with the experimental data, that the tendency 
of 7-dpf wild-type virtual larvae to repel each other is enhanced in 
scn1lab+/− mutant fish and diminished in disc1−/− animals (Fig. 4E). 
This phenotype carries robustly into 21-dpf animals, where disc1−/− 
zebrafish show an increased aggregation phenotype compared to 
wild-type virtual siblings. The success of this minimal model in qual-
itatively reproducing the experimental results suggests that, at least in 
the larval animal, genetic effects upon just the two visual responses 
suffice to explain core attributes of the emergent behavior of the group.

DISCUSSION
Here, we find that even young larval zebrafish interact with each 
other and that their swimming dynamics are well predicted by two 
visual responses: the retinal clutter response and the OMR. These 
two visuomotor assays explore the tendency of fish to attract to each 
other and to align their swimming direction with motion cues, re-
spectively, both key attributes of collective behaviors. We show that 
mutations in genes associated with autism and schizophrenia alter 
these two visual responses in subtle ways and that these changes are 
qualitatively predictive of emergent mutant shoaling and whole field 
motion alignment phenotypes. The effects of the two mutations on 
group dynamics can be detected in fish as young as 7 dpf, and they 
are qualitatively similar to the effects of the same mutations in groups 
of adult fish (24). Specifically, mutation of the scn1lab gene, the or-
tholog of which is associated with Dravet’s syndrome of childhood 
epilepsy and autism, causes fish to swim in a more dispersed fashion, 
and a mutation of disc1, associated with schizophrenia, causes fish 
to huddle more closely.

Larvae at 7 dpf do not aggregate into shoals or seek the vicinity 
of other fish (13,  30,  36), so responses to conspecific stimulation 
observed at this early age (32, 33) have been assumed to be unrelated 
to shoaling or schooling behavior. Here, we find that larval zebrafish 
repel, rather than attract, each other at this young age, which leads 
to a distinct global dispersion—or negative aggregation—phenotype. 
This repulsion phenotype switches to attraction with age, so that 
by 21 dpf, the animals tend to form more familiar aggregates and 
shoals (13, 36). Because 7-dpf larvae are not very motile and tend to 
live in protected areas with little water flow, this repulsion might 
assure them of sufficient oxygenation from relatively unstirred sur-
roundings (44), and it might help them avoid frequent collisions in 
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the cramped quarters typical for densely populated clutches. The 
switch to aggregation at 21 dpf likely helps keep groups of older 
animals together when they start exploring larger areas of their en-
vironment and when they begin swimming over longer distances. 

We also note an alignment tendency between fish, weak at 7 dpf and 
stronger at 21 dpf, which we cannot fully explain by the clutter re-
sponse, and which we find better predicted by turning responses 
of the individual fish to fields of moving dots. In adult fish, it has 
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Fig. 4. Simple visuomotor reflexes qualitatively predict emergent group behavior across genotypes and development. (A) Schematic of the model using only two 
simple algorithmic rules: First, fish are repelled or attracted to visual clutter (see Fig. 1E). Second, fish use global motion cues for turning decisions (see Fig. 2, A and E). Both 
cues are integrated over time and evaluated according to our integrator model (Fig. 2E). Model parameters for the clutter response strength are directly extracted from 
group swimming experiments (Fig. 2, E and F). Model parameters for the integration and decision-making process are taken from our multiobjective parameter fitting 
results (fig. S4B). The model is hence almost fully constrained by experimental data. (B) Example trajectories of simulated wild type 7 and 21 dpf based on the rules shown 
in (A). (C and D) Aggregation and alignment for wild-type simulations for all possible rule combinations (neither rule, only motion, only clutter, or both rules) for 7- and 
21-dpf model fish. Alignment does not emerge with attraction alone; it additionally requires animals to perform motion integration. Conversely, motion integration in-
duces some level of aggregation. Parameters for wild-type animals are the same as for the sibling controls for all tested mutant lines. (E and F) Aggregation and alignment 
for 7- and 21-dpf mutant model fish with respective sibling controls (left) and the corresponding data of real fish (right; same data as in Fig. 2). Our model can qualitative-
ly predict all group behavior phenotypes across ages as found in our experimental group assay (Fig. 2, A and B). N = 36 model simulations (each model uses different 
parameter sets, following our repeated model optimization; fig. S4B) in (C) and (D) and N = 12 model simulations for each genotype in (E) and (F). Experimental data in 
(E) and (F) are the same as in Fig. 2 (A and B).
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been shown that alignment can emerge purely on the basis of at-
traction and repulsion algorithms (9, 10, 12), although some have 
also speculated a need for specific alignment forces between fish 
(14, 16).

The mutations do not appear to affect alignment among the fish 
in free-swimming groups. However, 21-dpf scn1lab+/− mutant fish 
did show a correlation of alignment with proximity (Fig. 2C), sug-
gesting that these mutants might be more responsive to nearby 
moving stimuli. Adult scn1lab+/− mutant fish also exhibit enhanced 
alignment when swimming in close proximity (24). In the coherent 
dot assay, scn1lab+/− mutant fish align more accurately with moving 
dots than do their wild-type siblings. Thus, the cdOMR can serve as 
a powerful tool to uncover subtle differences in responses to motion 
in larvae.

To combine both visuomotor transformations into a unified 
model, we extracted the interocular retinal clutter difference, calcu-
lated an induced turning weight (see fig. S5 on the computation of 
turning weight), and fed that turning weight as an additional gain 
into the DDM as detailed for the cdOMR (Fig. 3E). We have chosen 
this particular implementation based on the physiological and ana-
tomical evidence for a multimodal hindbrain integrator circuit. A 
particular cluster of neurons in the ventral hindbrain of larval zebra-
fish has been shown to receive multimodal information relevant to 
turning responses, including luminance information (45) and dot 
motion OMR (39, 40). These data make it plausible that integration 
of visual clutter and motion information also occurs in the same 
brain area.

Our model, which is based solely on these two simple visuomo-
tor transformations, can account for a large fraction of the complex 
collective interactions that occur in groups. The model’s simplicity 
and its applicability even to 7-dpf larvae with their relatively simple 
and accessible brains make it a practical entry point to dissect the 
cellular nature of the algorithms that drive collective behaviors. 
Although fish have many sensory inputs that likely contribute to 
group behaviors, zebrafish are highly visual (39, 41, 46), suggesting 
that visual drives likely play a dominant role. Other sensory modal-
ities, such as somatosensation through the lateral line (32, 33) and 
olfaction (26, 34), undoubtedly play roles in modulating social 
interactions, as might currently less decipherable elements such as 
“internal state” (25–27) and “personality” (28–31).

The specific genetic perturbations that we have studied are in 
genes related to human psychiatric disorders. The human SCN1A 
gene (the ortholog of the zebrafish scn1lab gene) is associated with 
Dravet’s syndrome (where patients have epilepsy and developmental 
disorders including autism), and DISC1 is associated with schizo-
phrenia. Atypical visual reflexes, including the optokinetic response, 
have been noted in both autism and schizophrenia (47), and there is 
evidence for linkage between such perceptual differences and social 
abnormalities in autism (48). Perhaps reduction of complex behaviors 
to simple underlying reflexive motifs may help to characterize complex 
disorders. Quantitative characterization of changes in these reflexes 
in mutant zebrafish facilitates analysis of the underlying cellular de-
fects and enables screens for therapeutics (49).

METHODS
Zebrafish
To generate larvae for sibling-controlled experiments, heterozygous 
fish were incrossed. For scn1lab experiments, the scn1lab+/− fish 

were crossed with AB wild type. Clutches were raised in small 
groups (20 to 30) in 15-cm petri dishes with fish facility water in 
14-hour light, 10-hour dark cycle at constant 28°C. At 4 dpf, larvae 
were fed rotifers or paramecia daily with 50% water change. Behavior 
experiments were done at 7 and 21 dpf. All experiments followed 
protocols approved by the Harvard Institutional Animal Care and 
Use Committee.

Group assay
We used custom-designed experimental arenas of different sizes: di-
ameter of 6.5 and 12.6 cm (for groups of 7- and 21-dpf fish) and height 
of 1 cm made of 1/16 inch (~1.59 mm) polyethylene terephthalate 
glycol plastic (PETG). Arenas had a flat bottom and curved walls to 
encourage fish to swim away from the walls and were sandblasted 
to prevent reflections. Every experimental arena was filmed using an 
overhead camera and lit from below using infrared light (same as in 
the dot motion assay). Images were acquired at ~39 fps and were 
segmented online to separate fish images from the background. The 
segmented images were then analyzed offline to extract continuous 
tracks of the fish [see (50) for details of segmentation and tracking 
algorithms]. All acquisition and online segmentation were performed 
using custom- designed software written in MATLAB.

Individual and group properties of free-swimming fish
We used the extracted center of mass position of every fish ( fish i;    → x    i   ) 
to calculate the velocity of the fish     →  v  i   (t ) =   →  [    x  i   (t + dt ) −   →  x  i   (t − dt ) ]   / 2dt  , 
where dt is 1 frame or 0.025 s. The speed of the fish is then   S  i  (t ) = 
∣  →  v  i   (t )∣ , and the direction of motion is    

→
  d  i   (t ) =   →  v  i   (t ) / ∣  →  v  i   (t )∣ .

For the group, we calculate a normalized measure of group 
aggregation: Aggregation = − log (NN1/NN1

shuffled), where NN1 is the 
average nearest neighbor distance. NN1

shuffled is the same distance 
calculated from control groups created by shuffling fish between 
groups such that all fish in a shuffled group were chosen from dif-
ferent real groups. Positive aggregation values mean that real groups 
are more aggregated than shuffled controls, and 0 means aggregation 
occurred at random. Group alignment was defined as  alignment(t ) = 
∣ ∑ i  N     

→
  d  i   (t )∣/ N , where N is the number of fish in the group, and 

alignment value is bounded between 0, all fish are pointing in dif-
ferent directions, and 1, all fish swim in the same direction.

Estimating visual occupancy using ray casting
To estimate the visual angle that each neighbor in the group cast on 
the eye of a focal fish (fish i), we cast 1000 rays from each eye span-
ning 165° from the direction of motion toward the back of the fish, 
leaving a total of 30° of blind angle behind the fish. This amounts to 
an angular resolution of ~0.165° per line. We then detected all pixel 
values representing fish in the paths of the rays and calculated the 
visual angle occupied by each fish and the total visual angle experi-
enced by each eye (Fig. 1E).

Statistical analysis
We compared groups’ aggregation and alignment to the estimated 
“baseline” level obtained from shuffled groups (Fig. 1C) (see 
below), using a bootstrapping procedure (51). We estimated the 
sampling distribution based on the experimental sample by sampling 
with replacement N groups of five fish from the data 100,000 times. 
We constructed 95% BIs for the average statistic of these groups 
(i.e., alignment or aggregation) and also reported the associated 
Pbootstrap by inverting these intervals.
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We also compared group aggregation and alignment between 
wild-type 7- and 21-dpf zebrafish. Here, we used groups of five 
zebrafish, which we denote by “j.” Let Aj denote the age of group j, 
where Aj = 0 for a 7-dpf group and Aj = 1 for a 21-dpf group, and 
assume a completely randomized assignment of the group age status. 
For each group j, we measure an outcome Yj, such as group aggre-
gation or group alignment. We denote Yj(Aj = 0) the potential out-
come had group j been 7 dpf and Yj(Aj = 1) the potential outcome 
had group j been 21 dpf. We test the sharp null hypothesis stating 
that, for each group j, the potential outcomes are equal, that is, 
Yj(Aj = 0) = Yj(Aj = 1). We choose Welch's statistic (TWelch) as our 
test statistic. Following the procedure initially described in (52) and 
recently by various statisticians (53–55), we calculated two-sided 
Fisher P values (or approximated ones based on 100,000 randomized 
allocations).

To estimate the turning response probability (Figs. 1E and 
2, E and F), we calculated the proportion of right turns out of all turns 
(left + right turns) recorded for a given difference in clutter between 
the left and right visual field (discretized into 5° bins). Because the 
number of observation in each bin was too large for calculating 
the exact binomial, the CI around this point estimate was calcu-
lated using the normal approximation of the binomial distribution: 
 p ±  z  ±1.96   ·  √ 

_
  p · (1 − p) _ n     , where p is p(turn right), z±1.96 are the z scores 

defining the upper and lower bound containing 95% of a standard 
normal distribution, and n is the number of turns in a given bin. 
This estimation was performed independently for each bin, and the 
uncertainty region is shown as a continuous surface within the plots 
by connecting the edges of the individual estimates.

CIs for linear regression models (Figs. 1D and 2, C and D) were 

calculated as follows:   CI  i   =  y  i  ′±  t  (0.95,n−2)   ·  S  es t  y      √ 
_

   1 _ n  +    ( x  i   −  x ̄  )   2  _ 
 Σ  i    ( x  i   −  x ̄  )   2 

     where yi′ 
is the regression value at point xi, t(0.95, n − 2) denote the upper and 
lower bounds comprising 95% of a Student’s t distribution with n − 2 df, 

and   S  es t  y     =  √ 
_

   Σ  i    ( y  i   −  y ̄  )   2  _ n − 2     , where   x ̄    and   y ̄    are the averages of variables x 
and y. The uncertainty region is shown as a continuous surface 
within the plots by connecting the edges of the pointwise estimates.

We examined whether single-gene mutations in scn1lab and disc1 
have an effect on group aggregation and alignment phenotypes 
measured at 7 dpf and at 21 dpf (Fig. 2). We used groups of five 
zebrafish of the same mutant type, which we denote by j. Let Gj denote 
the mutation status of group j, where Gj = 0 for a wild-type group 
and Gj = 1 for a mutant group, and assume a completely random-
ized assignment of the group mutation status. For example, Gj = 0 
for a group of five scn1laballele2

+/+ fish and Gj = 1 for a group of five 
scn1laballele2

+/− fish. For each group j, we measure an outcome Yj, 
such as group aggregation or group alignment. We denote Yj(Gj = 0) 
the potential outcome had group j been wild type and Yj(Gj = 1) the 
potential outcome had group j been mutant. We test the sharp null 
hypothesis stating that, for each group j, the potential outcomes are 
equal, that is, Yj(Gj = 0) = Yj(Gj = 1). We use TWelch as our test sta-
tistic. For the aggregation phenotype, we calculated one-sided Fisher 
P values capitalizing on the results from (24); for the alignment pheno-
type, we calculated two-sided Fisher P values.

Using individual 7-dpf zebrafish in a cdOMR assay (Fig. 3), we 
also examined whether single-gene mutations in scn1lab and disc1 
have an effect on alignment. Here, we denote an experimental zebrafish 
unit by “i” and its mutation status by Gi, where Gi = 0 for wild type 
and Gi = 1 for mutant, and assume a completely randomized assign-
ment of the individual zebrafish mutation status. For each zebrafish 

i, we measure an outcome Yi, such as probability correct, interbout 
interval, or probability to turn in the same direction. We denote 
Yi(Gi = 0) the potential outcome had zebrafish i been wild type and 
Yi(Gi = 1) the potential outcome had zebrafish i been mutant. We 
test the sharp null hypothesis stating that, for each zebrafish i, the 
potential outcomes are equal, that is, Yi(Gi = 0) = Yi(Gi = 1). We 
chose TWelch as our test statistic and calculated two-sided Fisher 
P values (or approximated ones based on 100,000 randomized allo-
cations). Using this method, we compared the probability of correct 
turns, the interbout interval, and the integral of estimated turning 
distribution (turn angles of >20°) for 0, 25, 50, and 100% coherence 
levels. In addition, we also compared the probability of the fish to 
turn in the same direction 0.125 to 1.375 s after a swim bout during 
0% coherent motion (Fig. 3D). For each of these measured pheno-
types, we estimated two-sided Fisher P values as described above.

To report a measure of effect size in Figs. 1 and 2, we chose the 
commonly used Cohen’s d (56). In the case of a two-sample statistical 
model,  d =  (  x  ̄   1   −   x  ̄   2  ) _  S  p     , where    x  ̄   1   and   x  ̄   2    are the means of the two groups, 
and Sp is the pooled estimate of the SD of the two groups. In the case 
of a one-sample statistical model, we used  d =  (  x ̄    1   −    0  ) _  S  1     , where 0 is 
the estimate of the mean of null distribution or the estimated base-
line that we compared to. None of the reported P values and CIs 
were adjusted for multiple comparisons.

Motion assay
The assay has been described previously (39). In brief, 7-dpf larvae 
were placed in custom-designed acrylic dishes (12 cm diameter, 
5 cm height, black rim, and transparent bottom). The scene is illu-
minated from below with infrared light-emitting diode panels (940 nm, 
Cop Security). The fish are tracked with a camera (Grasshopper 3), 
a zoom lens (Zoom 7000, 18 to 108 mm, Navitar), and a long-pass 
filter (R72, Hoya). Posture analysis is performed in real time using 
custom-written software using Python 3.7 and OpenCV 4.1. Stimuli 
were presented from below (Aaxa P300 Pico Projector) onto mildly 
scattering parchment paper and consisted of ~1000 small (2-mm) 
white dots on a black background. We showed 0% coherence as a 
baseline stimulus for 5 s and then switched to (25, 50, or 100%) co-
herent motion at a constant speed (1.8 cm/s) for 10 s. Motion either 
went rightward or leftward relative to the body orientation of the fish. 
Each dot persisted for only 200 ms on average and stochastically 
disappeared and reappeared at a new location, so as to prevent fish 
from tracking individual dots. Following the coherent stimulus, the 
stimulus reverted to 0% coherence baseline.

Genotyping
For group assays (Figs. 1 and 2 and fig. S1), fish were genotyped at 
2 to 3 dpf using Zebrafish Embryonic Genotyper (wFluidx) or fin 
clipping and high-resolution melt analysis (HRM; primer sequences 
in table S1). Following all experiments, genotypes are confirmed by 
HRM following DNA extraction using hot shot genomic DNA 
preparation. Briefly, whole larvae are dissolved in 25 l of alkaline 
solution (25 nM NaOH and 0.2 mM Na2 EDTA) for 1 hour at 95°C, 
and an equal volume of neutralizing solution (40 mM tris-HCl) is added 
afterward. The genomic preparation is diluted 1:20 before HRM.

Drift-diffusion model
To better understand the origin of the observed behavioral pheno-
types during motion integration, we use computational modeling. 
This approach provides us with a more detailed characterization of 
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the behavior and allows us to indirectly infer how a mutation affects 
specific components of the sensory-motor transformation algorithm.

Previous work indicated that a simple DDM with a decision 
threshold can explain many aspects of the responses to the dot motion 
stimulus [Fig. 3E and fig. S3, A and B; (39, 40)]. The model is based 
on the temporal integration of noisy [drawn from a Gaussian distri-
bution N(0, )] motion evidence with certain coherence levels C(t). 
The integrator is leaky, and therefore, its signal X(t) increases slowly 
with a time constant () when the motion stimulus starts and decays 
with the same dynamics when it stops

   ·   dX(t) ─ dt   = C(t ) − X(t ) + N(0, )  

We solved this equation by using Euler’s method

   · X / t = C(t ) − X(t ) + N(0, )  

  X = (C(t ) − X(t ) + N(0, )) · t /   

  X(t + 1 ) = X(t ) + X  

Notably, we chose the same dt = 0.01 in all our model simula-
tions (also see the agent-based model below). This was important as 
the noise term N(0, ) in our stochastic differential equation would 
have a different influence on our results, depending on the choice of 
dt. This problem can be resolved by scaling  by   √ 

_
 dt   , which we did 

not do in our simulations. Therefore, the values of  displayed in 
fig. S4B should be interpreted in the context of dt. In our model, fish 
swim spontaneously with two different probabilities. When the in-
tegrated motion evidence X(t) is below the decision threshold (T), 
animals swim forward with a probability of pbelow. When it is above 
the threshold, they make a turn with a probability of pabove. The exact 
values of these probabilities indicate whether fish will initiate a swim 
event within a time step dt of our stochastic differential equation 
stimulation or not. In case of such events, forward swim heading angle 
changes were drawn from a Gaussian distribution N(0,5), while 
turning angle changes were drawn from a Gaussian distribution 
N( ±22,25), following the general shape of the measured heading 
angle change distributions (fig. S2C). Notably, none of the underlying 
five model parameters can be measured directly through behavioral 
experiments, requiring us to resort to an indirect method, a multi-
objective fitting strategy.

Multiobjective fitting algorithm
To uncover latent changes within the motion-integrating and 
decision-making circuits, we modified an evolutionary multiobjective 
optimization technique that can find the same global minimum and 
the same parameter set over repeated optimization runs (fig. S3C) 
(57, 58). This approach has been used in the past to solve highly 
nonlinear models that require multiple behavioral features to be 
optimized simultaneously (59, 60). One starts with a population of 
randomly chosen parameter sets (800 individuals in our case). Each 
parameter set gets evaluated, producing five behavioral features: (i) 
the probability to turn in the correct direction as a function of co-
herence (Fig. 3B), (ii) the interbout interval as a function of coher-
ence (Fig. 3C), (iii) the probability to turn in the same direction for 
consecutive swims during 0% coherence (Fig. 3D), (iv) the binned 
probability to turn in the correct direction as a function of time and 
coherence (fig. S2B), and (v) the turn angle probability distribution 

(fig. S2, C and D). For features (i) to (iv), the algorithm computes 
the mean squared error (MSE) between model simulation results 
and experimental data. For feature (v), we determined the distance 
between model and experiment using a Gaussian mixture model 
approach: We first fitted each probability distribution with three over-
lapping Gaussian functions (one for left turns, one for right turns, 
and one for forward swims). We then computed the MSE between 
the weights (peak heights) of the three resulting Gaussian functions. 
We also performed model optimizations with alternative distance 
metrics, such as the mean squared logarithmic error, leading to 
comparable results. Using these five distance functions, the multi-
objective algorithm then chooses which individuals are mutated and 
which ones will exchange parameter information, using crossover, 
to build the next generation.

We first sought to test that the used multiobjective optimization 
algorithm, a Python-based open-source package called pymoo 
(version 0.4), works as expected. To this end, we inspected the evo-
lution of Pareto fronts during the optimization procedure. We found 
that all tested pairs of distances approached the origin (0, 0) of the 
coordinate system and that the distribution of individuals covered 
increasingly more space of the error landscape over generations. We 
then tested the algorithm on artificially created surrogate datasets 
(fig. S3, D to H), where we explicitly selected certain hidden vari-
ables. The extent of their successful recovery allows for a quantitative 
evaluation of the multiobjective optimization technique. Using a set 
of parameters closely following our recently hand-tuned parameter 
set (39), we find that the five extracted behavioral features generally 
capture what we find in the experiment (compare Fig. 3, B to D, and 
figs. S2, B and C, and S3D). After a few generations, the optimization 
algorithm was able to identify individuals that had near-zero error 
in at least one of the behavioral features. Last, to assign a compro-
mise error value to each individual, we computed a weighted sum of 
the five normalized distance functions. To correct for the fact that 
each distance function has its own scale and unit, we first normalized 
values using the 75th percentile of the distribution of error values, 
which brought all distributions into a comparable range. As we con-
sider the interbout interval as the most important behavioral feature 
that our model should definitely capture, we next multiplied the weight 
for the interbout interval distance function by 3; for all other distance 
functions, we used a weight of 1.

It took about 80 generations for this compromise error function 
to converge (fig. S3E). Notably, our algorithm does not find indi-
viduals with exactly zero error. This is expected as our simulation is 
stochastic and therefore does not produce the exact same behavior 
in every stimulation run. We repeated the optimization algorithm 
12 times for four models with different parameter sets (fig. S3F). For 
each of the runs and models, we find that the algorithm successfully 
reduces the five error functions as well as the compromise error. 
At the end of each optimization run, we then picked the one indi-
vidual with the smallest compromise error value and compared its 
parameter values to the parameters originally used to create the sur-
rogate dataset (fig. S3G). We find that our algorithm can reveal 
these values and that repeated optimization runs produce more 
or less the same results. Looking at one of those optimized models, 
we confirm that the behavioral features do closely resemble the 
ones from the original dataset (fig. S3H). In summary, we conclude 
that our multiobjective evolutionary optimization is capable of ex-
tracting the hidden variables in our motion integration and decision- 
making model.
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DDM parameters extracted from motion integration assay
Knowing that our multiobjective fitting algorithm can reveal the 
latent variables in our DDM, we next applied this strategy to real 
experimental behavioral data of larval fish with different genotypes. 
For all tested genotypes, the optimization algorithm produces behavioral 
dynamics closely mimicking the ones found in experiments (com-
pare Fig. 3, B to D and F to H, and fig. S2, B to D and F to H). We 
repeated the optimization algorithm 12 times for each dataset. We find 
solutions to have similarly small error values (fig. S4A) and that the esti-
mated model parameters are more or less identical after each run (fig. S4B).

Collective behavior model
We simulated groups of five fish freely swimming in a circular are-
na. The arena was modeled with a diameter of 1024 pixels. Each fish 
had a random starting position (x and y) and orientation in the arena 
and length of fishsize = 20 pixels. At every time point during the 
simulation, fish made swimming decisions based on two simple 
sensory-motor transformation rules: the tendency to avoid or approach 
clutter and the tendency to align with global motion drift.

To compute clutter, we determined how much space another 
fish (fish i) occupies in the visual field of the focal fish (fish j) and 
added all values from the right hemisphere and subtracted all values 
from the left hemisphere

 Perceived clutte  r  j  (t ) =  ∑ 
i≠j

  
N

   hemispher e  weight   · 2 · arctan(fishsize / 2 ·  d  i,j  )  

where    d  i,j   =  √ 
_
  (      ( x  i   −  x  j  )   2  +  ( y  i   −  y  j  )   2  )     is the Euclidean distance be-

tween animal pairs and where hemisphereweight was either +1 or −1, 
depending on whether fish i was in the right or left hemisphere rela-
tive to the orientation of fish j. N is the number of fish (= 5 fish in 
our simulations). Hence, the sign and amplitude of the resulting 
signal reflect the asymmetry perceived by the focal fish.

To compute the perceived motion force [perceived motionj(t)] 
by the focal fish (fish j), we first performed projections of the mo-
tion vectors of all other fish (fish i) onto its circular field of view (fig. 
S5, A and B). As the vector length of the fish i is proportional to its 
momentary swim speed v(t), fast-swimming fish will produce a larger 
projection arc than slowly swimming fish. Notably, if fish i moves in 
the front or in the back of the focal fish (fish j), even when it moves 
in the same direction, this type of radial projection will produce dif-
ferent signs, which is not realistic. For example, when the other fish 
is in the front, moving left, the sign will be positive (projection arc 
is counterclockwise). When it is in the back, moving left, the sign 
will be negative (projection arc is clockwise). To correct this problem, 
we sign-inverted all projections where the other fish i started in the 
back of the focal fish j. Last, we multiplied these projections with a 
weight, depending on where on the retina the image is projected 
(fig. S5C). Our projections guarantee four important properties: (i) 
If the other fish approaches the focal fish directly—resembling a 
looming stimulus—or if it radially recedes, we will not obtain a motion 
force. This is biologically plausible because such stimuli would not 
specifically activate circuits tuned to object or global motion (fig. 
S5A). (ii) Motion force transitions between the back and the front 
are smooth. This is important as, otherwise, moving objects cross-
ing this line would produce a sudden discontinuity in the motion 
force. (iii) Fish moving in parallel to the focal fish will not produce 
turning forces (fig. S5A). (iv) Movements in the distance will pro-
duce smaller motion forces than proximal ones.

To obtain the total momentary perceived evidence for fish j, we 
simply added the values for clutter and motion

  Sensory evidenc e  j  (t ) =  w  clutter   ·  f  clutter   · perceived clutte r  j  (t ) +  
w  motion   · perceived motio n  j  (t)  

where wclutter is the weight of the clutter system, fclutter is the genotype- 
and age-dependent factor of the clutter system, and wmotion is the 
weight of the motion system.

Following our DDM (Fig.  3E), we integrated this value over 
time. Accordingly, when the integrated value was between the posi-
tive and negative thresholds, animals swam forward; when it was 
above the positive threshold, they turned to the right, and when it 
was below the negative threshold, they turned to the left. When 
swimming forward, animals covered 20 pixels per bout (about one 
body length) along their momentary axis of orientation. Moreover, 
animals stochastically changed their body orientation by a bit. Fol-
lowing the experimentally measured heading angle change distribu-
tions (fig. S2C), we drew those angles from a Gaussian distribution 
centered at 0° with an SD of 5°. Similarly, for initiating right or left 
turns, we drew angles from a Gaussian distribution centered at 22° 
or −22°, respectively, with an SD of 25° (fig. S2C). To capture the 
length and short gliding phase of forward swims and turns, we 
applied a low-pass filter with a time constant of 100 ms to these events, 
resulting in bout-like animal movement.

Notably, wclutter and wmotion are the only free parameters of our 
model, and all other parameters are directly extracted from experi-
mental data. Although tweaking those values would likely have re-
sulted in overall improved model performance, we wanted to work 
with the most minimal model and, therefore, simply set both weights 
to 1. We further chose fclutter for the 7-dpf scn1laballele2

+/+ wild type 
to be −1, which reproduced the weak avoidance and alignment of 
7-dpf scn1laballele2

+/+ wild-type larvae. The values for fclutter for the 
other genotypes and ages were then scaled according to the experi-
mentally measured probability to turn toward clutter (Fig. 2, E and F, 
and fig. S1E). For example, the clutter response strength for the 
7-dpf scn1laballele2

+/− was twice as strong as the one for the 7-dpf 
scn1laballele2

+/+. Hence, for this genotype, we scaled fclutter to −2. The 
clutter response of 21-dpf scn1laballele2

+/+ fish was positive and about 
three times as strong in amplitude as the one for 7-dpf scn1laballele2

+/− 
larvae. Hence, we scaled this value to +3. This procedure led to the follow-
ing clutter response factors for the 7-dpf animals: scn1laballele2

+/+: −1; 
scn1laballele2

+/−: −2; scn1laballele1
+/+: −1; scn1laballele1

+/+: −1.5; disc+/+: 
−2; disc−/−: −1.5. For the 21-dpf animals, we obtained the following: 
scn1laballele2

+/+: +3; scn1laballele2
+/−: +3; scn1laballele1

+/+: +3; scn1laballele1
+/+: +2; 

disc+/+: +1; disc−/−: +2.
For all other parameters of our model (time constant, ; noise, ; 

decision threshold, T; swim probabilities below and above the 
threshold, pbelow and pabove), we chose exactly the results obtained 
from the multiobjective fitting procedure (fig. S4B). For testing the 
clutter or motion systems in isolation (Fig. 4, C and D), we simply 
set the weight of the respective other system to zero. Every time 
when an animal reached the circular border of the arena, we picked 
a new random orientation vector. We did not reflect or wrap trajec-
tories across the border. We simulated the collective behavior model 
for 600 s with a time step of dt = 0.01 using the forward Euler method 
(see DDM above). We used Python 3.8 and the real-time compiler 
Numba. We stored the resulting trajectories in the exact same for-
mat as used for our experimental data, allowing us to use the same 
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analysis scripts to extract values for aggregation and alignment (Fig. 1). 
The simulation source code is available online:

https://github.com/arminbahl/mutant_zebrafish_behavior.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi7460

View/request a protocol for this paper from Bio-protocol.
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